$7^{\text {th }}$ Grade Intensive Math Instructional Focus Calendar 2013-2014

First Nine Weeks

7th Grade Intensive Math Instructional Focus Calendar August 2013

Office of Academics and Transformation
First Nine Weeks

7th Grade Intensive Math Instructional Focus Calendar
September 2013

Office of Academics and Transformation
First Nine Weeks
$7^{\text {th }}$ Grade Intensive Math Instructional Focus Calendar Topic I - OPERATIONS with RATIONAL NUMBERS

Benchmarks:
MA.7.A.3.1
MA.7.A.3.2
MA.7.A.5.1

Textbook Chapters: 2-1, 2-2, 2-3, 2-4, 2-11
PART A
\qquad
\qquad Class \qquad

LEsson Practice A

2-1 Integers

Graph each integer and its opposite on a number line.

1. 3
2. -5

Use the number line to compare the integers. Write < or >.

3. -8 \qquad 7
4. 4 \qquad -7
5. -6 \qquad -16
6. $-11 _11$

Graph the integers on a number line. Then write them in order from least to greatest.
7. $-6 ; 3 ;-5 ; 8$
8. $6 ;-7 ;-8 ; 0$

Use a number line to find each absolute value.

21. The windchill on a cold day made it feel like 5 degrees below zero outside. Write this temperature as an integer.
\qquad
22. A baby gained 15 pounds from birth to his first birthday. Write this amount as an integer.
15. 3.019×10^{7}
16. 7.355×10^{5}
17. 4
18. 830,000
19. 1.12
20. 4.1
21. $77,000,000$
22. 6
23. 1.4325×10^{5}
25. Brazil
24. 403,000,000
26. 3.7×10^{7}

Review for Mastery

1. 3; 84,000
2. $5 ; 6,100,000$
3. $22,000,000$
4. 753,000
5. 82,500
6. 1,230
7. 3;
8. 6 ;
$5 ; 1 ;^{3}$
9. 6.41×10^{5}
10. 8.25×10^{6}

Challenge

1. 6.4×10^{4} bytes
2. 4×10^{7} bytes
3. 1×10^{9} bytes
4. 2.5×10^{11} bytes
5. 4×10^{9} bytes
6. 2.5×10^{2} disks
7. 6.5×10^{8} bytes
8. 2.08×10^{10} bytes

Problem Solving

1. $1.5 \times 10^{8} \mathrm{~km}$
2. $4,500,000,000 \mathrm{~km}$
3. $\$ 7,600,000,000,000 ; 7.6 \times 10^{12}$
4. Canada
5. C
6. I
7. A
8. H

Reading Strategies

1. 5 times
2. $2.8 \times 10 \times 10 \times 10 \times 10 \times 10$
3. 5 places; 4
4. 280,000

Puzzles, Twisters \& Teasers

1. 4
2. 5
3. 5.92
4. 1.68
5. 8
6. 2.44; 7

LESSON 2-1
Practice A

3. $<$
4. $>$
5. $>$
6. $<$
7. $-8-6-4-2 \quad 0 \quad 2 \quad 4 \quad 6 \quad 8$
-6; -5; 3; 8

-8; -7; 0; 6
9. 6
11. 1
13. 9
15. 4
17. 15
19. 13
21. -5
10. 2
12. 8
14. 3
16. 10
18. 20
20. 17
22. 15

Practice B

3. $<$
4. $>$
5. $<$
6. $>$

$-5 ;-3 ;-1 ; 4 ; 7$

-6; -2; 0; 4; 8

$-8 ;-7 ;-2 ; 5 ; 6$

$-5 ;-4 ; 1 ; 3 ; 7$
11. 18
12. 11
13. 25
14. 19

SPACE CHIPS

\qquad
\qquad
\qquad

LEsson Reading Strategies

2-1 Use a Graphic Organizer

Definition The set of whole numbers and their opposites	Facts - Each number can be paired with its opposite. The opposite of 2 is -2. The opposite of -3 is 3. - Zero is its own opposite.
Integers $0,2,5,9,13,-3,-7,-12,-17$ Non-examples	$\frac{2}{3}, \frac{11}{5}, 2 \frac{5}{8}, 0.5,0.23,1.05,3.61$

Answer each question.

1. What are integers?
2. Write the opposite of 6 . \qquad
3. Write the opposite of 10 . \qquad
4. Write the opposite of 0 . \qquad
5. Write the opposite of -8 . \qquad
6. Write the opposite of -3 . \qquad

Write "integer" or "not an integer" for the following numbers.
7. -9 \qquad
8. $\frac{5}{7}$ \qquad
9. 0.1 \qquad
10. 42 \qquad
15. 10
16. 16
17. 22
18. 14
20. 24
22. 17
24. 6,684

Practice C

1. $-15-10 \quad-5 \quad 0 \quad 5 \quad 10 \quad 15$
2.

3. $<$
4. $>$
5. $>$
6. $<$
7.

$$
-6 ;-2 ;-1 ; 3 ; 4
$$

$$
-7 ;-5 ; 0 ; 6 ; 7
$$

9. 45
10. 38
11. 99
12. 22
13. 19
14. 375
15. 59
16. 84
17. =
18. <
19. <
20. <
21. >
22. <
23. $>$
24. <
25. 750,000; $-2,000,000$
26. $-30 ; 110$

Review for Mastery

1. $4 \quad 2.4$
2. opposite integers
3. $\underset{-5-4-3-2-1}{4}$

4. $-3 ;-1 ; 2$
5. $-6 ;-2 ; 4$
6. $-3 ; 1 ; 7$
7. 3

Challenge

1. $-12<-11<6$
2. $-201<-3<-1$
3. $-6<|-3|<|-6|$
4. $-7<|3|<|-38|$
5. $4>-4>-40$
6. $|-18|>0>-8$
7. $|-75|>|12|>7$
8. $1>-12>-16$

AN ABSOLUTE VALUE

Problem Solving

1. -80
2. outside Jared's house
3. $-62,500 ; 34,100$
4. $-3^{\circ} \mathrm{C} ;-1{ }^{\circ} \mathrm{C} ; 0^{\circ} \mathrm{C} ; 2{ }^{\circ} \mathrm{C} ; 5^{\circ} \mathrm{C}$
5. C
6. F
7. A
8. I

Reading Strategies

1. the set of whole numbers and their opposites
2. -6
3. -10
4. 0
5. 8
6. 3
7. integer
8. not an integer
9. not an integer
10. integer

Puzzles; Twisters \& Teasers

J E L L Y
\qquad
\qquad

Lesson Review for Mastery
 2-1 Integers

This number line shows integers.

Every integer has an opposite integer. A number and its opposite are the same distance from 0 .

1. How many units is 4 from 0 ? \qquad 2. How many units is -4 from 0 ? \qquad
2. 4 and -4 are called \qquad .

Graph each integer and its opposite on a number line.

4. 2

You can use a number line to compare and order numbers. The numbers get greater as you move to the right on the number line.
5. -3

6. What is the order from least to greatest of $-1,2$, and -3 ? \qquad
Write the integers in order from least to greatest.
7. $-2 ;-6 ; 4$
\qquad
The absolute value of an integer is its distance from 0 on a number line. -5 is 5 units from 0 . The absolute value of -5 is 5 . You write $|-5|=5$.
8. $-3 ; 7 ; 1$
9. How many units from 0 is -3 ? \qquad
15. 10
16. 16
17. 22
18. 14
20. 24
22. 17
24. 6,684

Practice C

1. $-15-10 \quad-5 \quad 0 \quad 5 \quad 10 \quad 15$
2.

3. $<$
4. $>$
5. $>$
6. $<$
7.

$$
-6 ;-2 ;-1 ; 3 ; 4
$$

$$
-7 ;-5 ; 0 ; 6 ; 7
$$

9. 45
10. 38
11. 99
12. 22
13. 19
14. 375
15. 59
16. 84
17. =
18. <
19. <
20. <
21. >
22. <
23. $>$
24. <
25. 750,000; $-2,000,000$
26. $-30 ; 110$

Review for Mastery

1. $4 \quad 2.4$
2. opposite integers
3. $\underset{-5-4-3-2-1}{4}$

4. $-3 ;-1 ; 2$
5. $-6 ;-2 ; 4$
6. $-3 ; 1 ; 7$
7. 3

Challenge

1. $-12<-11<6$
2. $-201<-3<-1$
3. $-6<|-3|<|-6|$
4. $-7<|3|<|-38|$
5. $4>-4>-40$
6. $|-18|>0>-8$
7. $|-75|>|12|>7$
8. $1>-12>-16$

AN ABSOLUTE VALUE

Problem Solving

1. -80
2. outside Jared's house
3. $-62,500 ; 34,100$
4. $-3^{\circ} \mathrm{C} ;-1{ }^{\circ} \mathrm{C} ; 0^{\circ} \mathrm{C} ; 2{ }^{\circ} \mathrm{C} ; 5^{\circ} \mathrm{C}$
5. C
6. F
7. A
8. I

Reading Strategies

1. the set of whole numbers and their opposites
2. -6
3. -10
4. 0
5. 8
6. 3
7. integer
8. not an integer
9. not an integer
10. integer

Puzzles; Twisters \& Teasers

J E L L Y

2-1 Integers

Steps for Success

Step I In order to introduce the concept of integers, direct students to the photo in the lesson opener.

- Explain that if the surface of the water is zero, then a negative number represents the location of someone beneath the water surface, such as a diver. A positive number represents the location of someone above the water surface, such as a lifeguard in a chair.
- Discuss the concept of elevation. Explain that at sea level the elevation is zero. Locations above sea level are represented with positive numbers, and locations below sea level are represented with negative numbers. Ask students if they know the elevation of their city with respect to sea level.
Step II Ask the students to complete the worksheet.
- Problem 1 on the worksheet supports the lesson opener.
- Problem 2 on the worksheet supports Example 1A in the student textbook. Ask students to explain the word opposite. Make a list on the board of common opposite words: open/close, up/down, in/out, forward/backward.
- Problem 3 on the worksheet supports Example 4 in the student textbook.
Step III Teach the lesson. Assess students' understanding of the lesson by referring them to the Think and Discuss exercises.

Making Connections

- Ask students to describe real-world examples of how integers are used, such as in temperature, golf scores, and elevation.
- Take a field trip to the school football field, or create a field in your school's green space with yard-line markings. Pair up students. Position one student at the 50 -yard line. Have the other student call out a loss or gain of yardage. The student on the field then has to move according to the loss or the gain.
- Verify that students understand that opposites are equidistant from zero by having them count with their fingers the distance from zero to each number.
- Have students create a number line for the classroom. Use the number line to physically show distances from zero to a given integer. This can also be used to explain opposites, ordering integers, and absolute value.
- Have students research the elevation of the five largest cities closest to their hometown.
\qquad Date \qquad Class \qquad

LEsson Student Worksheet

2-1 Integers

Problem 1

An integer is a positive or negative whole number.
A positive number is a number greater than zero.
A negative number is a number less than zero.

Sylvia Earle dove to an elevation of $-1,250$ feet.

Problem3

A number's absolute value is its distance from 0 on a number line.

Think and Discuss

1. What is the absolute value of 2 ?
2. What is the absolute value of -2 ?
3. Name two integers that have the same absolute value.
4. What is the absolute value of 2 ?
\qquad
\qquad

Problem 2

Jeb's number is 3 .
 -
\qquad

Lesson 2-1

Think and Discuss

1. 2
2. 2

Lesson 2-2

Think and Discuss

1. different signs
2. add
3. add; -9

Lesson 2-3

Think and Discuss

1. When you find the difference between a positive number and a negative number, you add.
2. -9
3. You are not adding or subtracting -4 , you are subtracting 3 from -4 .
4. No, they are opposites.

Lesson 2-4

Think and Discuss

1. Because both numbers have the same sign. The quotient of two same signed numbers is positive.
2. Yes; The quotient is -2 in both cases.

Lesson 2-5

Think and Discuss

1. n
2. use subtraction
3. The equation is a true statement when $n=-13$.
4. when $n=-1$
5. when $n=1$
6. when $n=1$
7. when $n=-1$

Lesson 2-6

Think and Discuss

1. The variable is not alone on one side.
2. There are 12 months in the year.

3 . The coefficient of m would need to be 365 .

Lesson 2-7

Think and Discuss

1. 4
2. It would be the same.

Lesson 2-8

Think and Discuss

1. $1,2,3,4,6$, and 12
2. Because 6 is not the greatest factor that 24,36 , and 48 have in common.
3. In both methods you are finding common factors, and determining the greatest factor that the numbers have in common.

Lesson 2-9

Think and Discuss

1. It is the common multiple of both numbers with the least value.
2. Because 2 is a factor common to both numbers.

Lesson 2-10

Think and Discuss

1. Cher ate the same amount. $\frac{3}{4}$ is equivalent to $\frac{6}{8}$ and $\frac{9}{12}$.

Lesson 2-11

Think and Discuss

1. terminating decimal; the decimal comes to an end.
2. tenths
3. thousandths $=\frac{36}{1,000}$
4. Yes; $0.333 \ldots$ is a repeating decimal and 0.3 is a terminating decimal.

Assignment Guide

If you finished Example 1 assign:
Average 1-4, 16-19, 52-58
Advanced 16-19, 40-42, 52-58
If you finished Example 2 assign:
Average 1-8, 16-23, 31-38, 52-58
Advanced 16-23, 31-42, 52-58
If you finished Example 3 assign:
Average 1-11, 16-26, 31-42, 50-58
Advanced 16-26, 31-42, 50-58
If you finished Example 4 assign:
Average 1-42,51-58
Advanced 16-58

Homework Quick Check

Quickly check key concepts.
Exercises: 18, 22, 26, 30, 36, 38
= WORKED-OUT SOLUTIONS
on p . WS3
Interactive Answers and Solutions

Answers

1-4, 16-19. See p. A1.

Math Background

The mathematical concept of absolute value parallels the notion of magnitude in science. Forces act on bodies with a magnitude, or size, and a direction. The sign of an integer tells its direction, and the absolute value tells its magnitude.

GUIDED PRACTICE

See Example 1 Graph each integer and its opposite on a number line.

1. 2
2. -9
3. -1
4. 6

See Example 2 Compare the integers. Use $<$ or $>$.
5. $5 \square-5>$
6. $-9-18>$
7. $-21-17<$
8. $-12 \square 12<$

See Example 3 Use a number line to order the integers from least to greatest.
9. $6,-3,-1,-5,4$
10. $8,-2,7,1,-8$
$-8,-2,1,7,8$
11. $-6,-4,3,0,1$
$-6,-4,0,1,3$

See Example
ti. number line to find each absolute value
12. $|-2| 2$
13. $|8| 8$
14. $|-7| 7$
15. $|-10| 10$

INDEPENDENT PRACTICE

See Example 1 Graph each integer and its opposite on a number line.
16. -4
17. 10
18. -12
19. 7

See Example 2 Compare the integers. Use $<$ or $>$.
20. $-14-7<21.9-9>$
22. -12
$12<$
23. $-31-27<$

See Example 3 Use a number line to order the integers from least to greatest.
24. $-3,2,-5,-6,5$
25. $-7,-9,-2,0,-5$
26. $3,-6,9,-1,-2$
$-6,-2,-1,3,9$

See Example 4 Use a number line to find each absolute value.
27. $|-16| 16$
28. |12| 12
29. $|-20| 20$
30. $|15| 15$

PRACTICE AND PROBLEM SOLVING

Compare. Write $<,>$, or $=$.
31. $-25 \quad 25<$
32. $18-55>$
(33.) $|-21|-21=$
34. $-9 \square-27>$
35. $34-|34|=$
36. 64
$|-75|<$
37. $|-3| \square$
$|3|=$
38. $-100-82$
39. Earth Science The table shows the average temperatures in Vostok, Antarctica from March to October. List the months in order from coldest to warmest. Aug, Jul, Sep, May, Jun, Apr, Mar, Oct

Month	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Temperature ($\left.{ }^{\circ} \mathrm{F}\right)$	-72	-84	-86	-85	-88	-90	-87	-71

40. What is the opposite of $|32|$? -32 41. What is the opposite of $|-29| ?-29$
41. $-2,000,000$; 42. Business A company reported a net loss of $\$ 2,000,000$ during its first year. In its 5,000,000

$$
\text { second year it reported a profit of } \$ 5,000,000 \text {. Write each amount as an integer. }
$$

REVIEW FOR MASTERY 2-1

	PRACTICE 2-1
Coment	
最	
20,	
	(2)
${ }_{\text {I5 }}^{510910}$	
${ }^{12,199}$	
2 and	

In wakeboarding, a rider uses the waves created by a boat, the wake, to jump into the air and perform tricks such as rolls and flips.
43. Critical Thinking Give an example in which a negative number has a greater absolute value than a positive number. Possible answer: $|-10|>|9|$
44. Social Studies Lines of latitude are imaginary lines that circle the globe in an east-west direction. They measure distances north and south of the equator. The equator represents 0° latitude.
a. What latitude is opposite of 30° north latitude? 30° south
b. How do these latitudes' distances from the equator compare?

They are
the same.
Sports The graph shows how participation in several sports changed between 1999 and 2000 in the United States.
45. By about what percent did participation in racquetball increase or decrease? decreased by
46. By about what percent did participation in wall climbing increase or decrease? increased by
47. What's the Error? At 9 A.m. the outside temperature was $-3^{\circ} \mathrm{F}$. By noon, the temperature was $-12{ }^{\circ} \mathrm{F}$. A newscaster said that it
 was getting warmer outside. Why is this incorrect? $-12^{\circ} \mathrm{F}<-3^{\circ} \mathrm{F}$, so it was getting colder outside.
48. Write About It Explain how to compare two integers.
49. Challenge What values can x have if $|x|=11$? 11 or -11

Florida Spiral Review

MA.7.A.3.1, MA.7.A.3. 3
50. Multiple Choice Which list shows the values in order from least to greatest?
A. $|-5|,|-3|,|-4|,|2|$
C. $|-3|,|2|,|-4|,|-5|$
(B.) $|2|,|-3|,|-4|,|-5|$
D. $|-5|,|-4|,|-3|,|2|$
51. Multiple Choice Which number is NOT equivalent to the others?
(F.) -10
G. $|-10|$
H. $|10|$
I. 10

Simplify each expression. Use the order of operations to justify your answer. (Lesson 1-2)
52. $(4 \cdot 9)-(9-3)^{2} 0$
53. $5+9 \cdot 2^{2} \div 6 \quad 11$
54. $6,842-\left(5^{3} \cdot 5 \cdot 10\right) 592$

Solve each equation. Check your answer. (Lessons 1-8, 1-9)
55. $n-22=16 n=38$

$$
\text { 56. } y+27=42 y=15
$$

57. $\frac{m}{36}=12 m=432$ 58. $144=3 p$ $p=48$

CHALLENGE 2-1

\qquad
THIS DEAL IS

V A L U E.

LEssom Problem Solving			
Integers			
Write the correct answer.			
1. The coldest place on record in the United States was in Alaska in 1971. It was $80^{\circ} \mathrm{F}$ below zero. Write this temperature as an integer.	2. The temperature outside was $-4{ }^{\circ} \mathrm{F}$ at Jared's house and $-8^{\circ} \mathrm{F}$ at Mario's house. Where was the temperature warmer?		
-80	outside Jared's house		
3. A small business reported a net loss of $\$ 62,500$ during its first year. In its second year, it reported a profit of $\$ 34,100$. Write each amount as an integer.	4. For one day, Lacy recorded the low temperatures in five U.S. cities. The temperatures were $5^{\circ} \mathrm{C},-1^{\circ} \mathrm{C}$, $-3^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C}$, and $0^{\circ} \mathrm{C}$. Write the temperatures in order from least to greatest.		
-62,500; 34,100	$-3{ }^{\circ} \mathrm{C} ;-1{ }^{\circ} \mathrm{C} ; 0^{\circ} \mathrm{C} ; 2^{\circ} \mathrm{C} ; 5^{\circ} \mathrm{C}$		
Choose the letter for the best answer.			
5. Which number is not an integer? $-3 ; 5 ; \frac{1}{5} ; 0$	6. Basha says $\|5\|$ and $\|-5\|$ are the same number. Danny says $\|5\|$ and		
A $-3 \quad$ C $\frac{1}{5}$	$\|-5\|$ are different numbers. Kim		
B 5 D 0	says $\|5\|$ and $\|-5\|$ both equal 0 . Who is correct?		
7. Use the table at right. Which continent has the highest point?	F Basha G Danny		
$\begin{array}{llll}\text { A Asia } & \text { C Africa } \\ \text { B South America } & \text { D } & \text { Australia }\end{array}$	H Kim		
	I They are all wrong.		
8. Use the table at right. Which continent has the lowest point?			
	Continent	Point (tt)	Point (ti)
H North America I Asia	North America	20,320	-282
	South America	22,834	-131
	Africa	19,340	-512
	Asia	29,028	-1,339
	Australia	7,310	-52
	Europe	18,510	-92

Ongoing Assessment

and INTERVENTION
Diagnose Before the Lesson
2-1 Warm Up, TE p. 64

Monitor During the Lesson
2-1 Learn It, Worktext pp. 31-33
2-1 Summarize It, Worktext p. 34

Assess After the Lesson
2-1 Lesson Quiz, TE p. 67

Answers

48. Possible answer: Think about their placement on a number line. The integer to the right is the greater integer.

Test Prep For Exercise 51, Doctor + encourage students to think about how they would graph each value. Only choice F would be graphed as a negative number. Choice \mathbf{F} is not equivalent to the others.

Journal

Have students describe real-world situations that could be represented using integers. For each situation, ask students what zero would represent. Ask students to discuss what the absolute value of a number would signify in each situation.

Power Presentations

 with PowerPoint ${ }^{\circledR}$
2-1
 Lesson Quiz

Compare. Use $<,>$, or $=$.

1. $-32 \square 32$
2. $26 \square|-26|$
3. $-8 \square-12$
4. Use a number line to order the integers $-2,3,-4,5$, and -1
from least to greatest.

$$
-4,-2,-1,3,5
$$

5. Use a number line to find $|-3| .3$

Also available on transparency
\qquad
\qquad
\qquad

2-2 Adding Integers

Show the addition on the number line. Then write the sum.

1. $2+(-3)$
2. $-3+(-4)$

\qquad
Find each sum.
3. $-4+(-9)$
4. $7+(-8)$
5. $-2+1$
6. $6+(-9)$
7. $5+7$
8. $9+(-5)$
9. $(-1)+9$
10. $-9+(-7)$
11. $2+(-7)$
12. $-6+(-4)$
13. $3+2$
14. $-2+6$
\qquad
\qquad
\qquad
\qquad
Evaluate $\mathbf{e}+\boldsymbol{f}$ for the given values.
15. $e=9, f=-2$
16. $e=-4, f=-6$
17. $e=6, f=-1$
\qquad
18. $e=8, f=-6$
19. $e=-2, f=-3$
20. $e=-3, f=2$
21. The temperature dropped $13^{\circ} \mathrm{F}$ in 7 hours. The final temperature was $-2^{\circ} \mathrm{F}$. What was the starting temperature?
22. A football team gains 8 yards in one play, then loses 5 yards in the next. How many yards did the team gain in these two plays?

\qquad
\qquad
\qquad

LEsson Reading Strategies
 2-2 Use Graphic Aids

Randy's football team had the ball on the zero yard line. On their first play they gained six yards. On the second play they lost four yards. On what yard line is the ball now?

Use the number line to help you answer the questions.

1. On which number do you begin? \qquad
2. Which direction do you move first? How many places do you move?
3. Which direction do you move next? How many places do you move?

When Angela went to bed, the temperature was zero degrees. When her mother went to bed two hours later, the temperature had gone down 5 degrees. By the time Angela got up the temperature had gone down another 3 degrees. What was the temperature when she got up?

Use the number line to help you answer the questions.
4. On which number do you begin? \qquad
5. Which direction do you move first? How many spaces?
6. Which direction do you move next? How many spaces?

Challenge

1. -13
2. -22
3. -22
4. -27
5. -2
6. -16
7. -19
8. -5
9. -18
10. $>$
11. $=$
12. $>$
13. $>$
14. $<$
15. $>$
16. $<$
17. $<$
18. <
19. Answers will vary.
20. Possible answer: chalk
21. Possible answer: bench
22. Answers will vary.

Problem Solving

1. $5^{\circ} \mathrm{F}$
2. $-22^{\circ} \mathrm{F}$
3. $\$ 35$
4. 535 ft
5. -97 ft
6. $17,500 \mathrm{ft}$
7. B
8. H
9. C
10. I

Reading Strategies

1. 0
2. to the right; 6
3. to the left; 4
4. 0
5. to the left; 5
6. to the left; 3

Puzzles, Twisters \& Teasers
R: -9
S: 7
L: -19
H: -88
O: -6
E: -18
C: 39
W: 25
D: 13
A: -17
T: -16
N: 1
SHEWANTED
COLD HARD CASH

LESSON 2-3

Practice A

2.

$$
-4
$$

3. -7
4. -5
5. 6
6. 9
7. -16
8. 0
9. 1
10. 12
11. 7
12. 16
13. -11
14. 4
15. 9
16. -8
17. 3
18. -2
19. 0
20. $9^{\circ} \mathrm{F}$
21. -10
22. $14{ }^{\circ} \mathrm{F}$

Practice B

2.

6
3. -10
4. 5
5. -4
6. 24
7. 0
8. 46
\qquad
\qquad
\qquad

LEsson Review for Mastery

2-2 Adding Integers

This balance scale "weighs" positive and negative numbers.
Negative numbers go on the left of the balance, and positive numbers go on the right.

Find $-11+8$.
The scale will tip to the left side because the sum of -11 and +8 is negative.
$-11+8=-3$

Find $-2+7$.
The scale will tip to the right side because the sum of -2 and +7 is positive.
$-2+7=5$

Find $-1+(-3)$.
Both -1 and -3 go on the left side. The scale will tip to the left side because the sum of -1 and -3 is negative.
$-1+(-3)=-4$

Find $3+(-9)$.

1. Should you add or subtract? \qquad
2. Will the sum be positive or negative? \qquad

$$
3+(-9)=-6
$$

the sign of the integer with
 the greatest absolute value

Find -5 + (-8).
3. Should you add or subtract? \qquad
4. Will the sum be positive or negative? \qquad
5. $-5+(-8)=$ \qquad
Add.
6. $7+(-3)=$ \qquad
7. $-2+(-3)=$ \qquad
8. $-5+4=$ \qquad
9. $-3+(-1)=$ \qquad
10. $-7+9=$ \qquad
11. $4+(-9)=$ \qquad

LEsson Success for Every Learner

2:2 Adding Integers

Steps for Success

Step I In order to create interest for the lesson, refer students to the problem described in the lesson opener and the picture for Problem 1 on the student worksheet.

- Discuss how making and saving money is related to a positive number. Explain that when you put money into a savings account or into a piggy bank that you "add" money to it.
- Discuss how spending and losing money is related to a negative number. Explain that when you take money out of a savings account or out of a piggy bank that you "take away" money from it.
Step II Teach the lesson.
- Walk students through Example 1 in the student textbook. Have students point to the place on the number line where they should begin.
- Review the definitions of sum and difference. Have students brainstorm a list of words that mean "sum" and "difference."
- Step through the examples and stress the idea that "same signs" means to add and "different signs" means to subtract.
Step III Ask the students to complete the worksheet.
- Refer students to Problem 1 on the worksheet which supports Example 4 in the student textbook.
- Refer students to Problem 2 on the worksheet. This corresponds to Example 1A in the student textbook.
- Remind students to move right on a number line for positive numbers, and to move left for negative numbers.
- Refer students to Problem 3 on the worksheet. This corresponds to Example 2 in the student text.

Making Connections

- Create a list of ten integers on the board, and include 5 negative integers and 5 positive integers. Have students make 2 pairs of integers that have the same sign and 3 pairs of integers that have different signs.
- Use play money to physically demonstrate expenses and income. For instance, give one student $\$ 250$. Tell him that he owes one person $\$ 95$ and another person $\$ 143$. Ask him to calculate how much money he owes. Then have him determine how much money he has left once he pays his debt.
\qquad Date \qquad Class \qquad

LEsson Student Worksheet

2-2 Adding Integers

Problem 1

The club has an income of $\$ 300$ and expenses of $\$ 25$.

Problem 2

What is $-3+(-6) ?$

Problem 3

Think and Discuss

1. Does the expression $-3+5$, have same signs or different signs?
2. If the signs are the same, do you add or subtract? \qquad
3. In Problem 2, do you add or subtract? What is the answer?

Lesson 2-1

Think and Discuss

1. 2
2. 2

Lesson 2-2

Think and Discuss

1. different signs
2. add
3. add; -9

Lesson 2-3

Think and Discuss

1. When you find the difference between a positive number and a negative number, you add.
2. -9
3. You are not adding or subtracting -4 , you are subtracting 3 from -4 .
4. No, they are opposites.

Lesson 2-4

Think and Discuss

1. Because both numbers have the same sign. The quotient of two same signed numbers is positive.
2. Yes; The quotient is -2 in both cases.

Lesson 2-5

Think and Discuss

1. n
2. use subtraction
3. The equation is a true statement when $n=-13$.
4. when $n=-1$
5. when $n=1$
6. when $n=1$
7. when $n=-1$

Lesson 2-6

Think and Discuss

1. The variable is not alone on one side.
2. There are 12 months in the year.

3 . The coefficient of m would need to be 365 .

Lesson 2-7

Think and Discuss

1. 4
2. It would be the same.

Lesson 2-8

Think and Discuss

1. $1,2,3,4,6$, and 12
2. Because 6 is not the greatest factor that 24,36 , and 48 have in common.
3. In both methods you are finding common factors, and determining the greatest factor that the numbers have in common.

Lesson 2-9

Think and Discuss

1. It is the common multiple of both numbers with the least value.
2. Because 2 is a factor common to both numbers.

Lesson 2-10

Think and Discuss

1. Cher ate the same amount. $\frac{3}{4}$ is equivalent to $\frac{6}{8}$ and $\frac{9}{12}$.

Lesson 2-11

Think and Discuss

1. terminating decimal; the decimal comes to an end.
2. tenths
3. thousandths $=\frac{36}{1,000}$
4. Yes; $0.333 \ldots$ is a repeating decimal and 0.3 is a terminating decimal.

Assignment Guide

If you finished Example 1 assign:
Average 1-4, 13-20, 56, 58-65
Advanced 13-16, 56, 58-65
If you finished Example 2 assign:
Average 1-8, 13-28, 56-65
Advanced 13-23, 34-41, 56-65
If you finished Example 3 assign:
Average 1-11, 13-31,56-65
Advanced 13-31, 34-41, 56-65
If you finished Example 4 assign:
Average 1-32, 34-44 even, 45-51 odd, 56-65
Advanced 13-57, 58-64 even

Homework Quick Check

Quickly check key concepts.
Exercises: 14, 16, 26, 28, 30, 32

O WORKED-OUT SOLUTIONS on p . WS3

Interactive Answers and Solutions

Math Background

The same properties students learned for whole number addition are used for adding integers. The Commutative and Associative Properties allow addition of three or more addends to be rewritten in the most convenient order. Generally, this involves first grouping the positives and then grouping the negatives. Be certain students keep the sign with its number when they change the order. By using integers we can talk about the additive inverse (opposite) of a number. The sum of a number and its inverse is always zero.

Sunshine State	
Standards	
Benchmark	Exercises
MA.7.A.3.1	$1-57,62-65$
MA.7.A.3.2	$1-57,62-65$
Rev. MA.5.A.6.2	$58-61$

Evaluate each expression for $w=-12, x=10$, and $y=-7$.
46. $7+y \quad 0$
47. $-4+w$
48. $w+y-19$ 49. $x+y \quad 3$
50. $w+x-2$

The Appalachian Trail extends about 2,160 miles from Maine to Georgia. It takes about 5 to 7 months to hike the entire trail.

Recreation Hikers along the Appalachian Trail camped overnight at Horns Pond, at an elevation of $3,100 \mathrm{ft}$. Then they hiked along the ridge of the Bigelow Mountains to West Peak, which is one of Maine's highest peaks. Use the diagram to determine the elevation of West Peak. $4,150 \mathrm{ft}$

52. Multi-Step Hector and Luis are playing a game. In the game, each player starts with 0 points, and the player with the most points at the end wins. Hector gains 5 points, loses 3, loses 2, and then gains 3. Luis loses 5 points, gains 1 , gains 5 , and then loses 3 . Determine the final scores by modeling the problem on a number line. Then tell who wins the game and by how much.
53. What's the Question? The temperature was - -8 . ${ }^{\circ} \mathrm{F}$ at Hector wins by 5 A.M. and rose points. by 9 А.м. The answer is $7{ }^{\circ} \mathrm{F}$. What is the question? What was the temperature at 9 A.м.?
54. Write About It Compare the method used to add integers with the same sign and the method used to add integers with different signs.
55. Challenge A business had losses of $\$ 225$ million, $\$ 75$ million, and $\$ 375$ million and profits of $\$ 15$ million and $\$ 125$ million. How much was its overall profit or loss? loss of $\$ 535$ million

Florida Spiral Review

56. Multiple Choice Which expression is represented by the model?
A. $-4+(-1)$
(C. $-4+3$
B. $-4+0$
D. $-4+4$

57. Multiple Choice Which expression has the greatest value?
(F.) $-4+8$
G. $-2+(-3)$
H. $1+2$
I. $4+(-6)$

Simplify each expression. (Lesson 1-2)
58. $2+5 \cdot 2-39 \quad$ 59. $3^{3}-(6 \cdot 4)+14$ 60. $30-5 \cdot(3+2) \quad 5 \quad 61.15-3 \cdot 2^{2}+14$

Compare. Write $<,>$, or $=$. (Lesson 2-1)
62. $-14 \square|-12|<63 .|-4| \square 3>$
64. $|-6| \square 6=$
65. $|-9| \square-11>$

PROBLEM SOLVINC 2-2	
${ }_{2.2}^{\text {Lessom }} \frac{\text { Problem Solving }}{\text { Adding Integers }}$	
Write the correct answer.	
1. The temperature dropped $12^{\circ} \mathrm{F}$ in 8 hours. If the final temperature temperature?	2. At 3 P.M., the temperature was $9{ }^{\circ} \mathrm{F}$. By 11 P.M., it had dropped $31^{\circ} \mathrm{F}$. hat was the temperature at 11 P.M.?
$5{ }^{\circ} \mathrm{F}$	$-22^{\circ} \mathrm{F}$
3. Tad owes John $\$ 23$ and borrows $\$ 12$ more. How much does Tad $\$ 12$ more. How owe John now?	4. New Orleans, Louisiana, is 6 feet below sea level. The highest point 541 feet higher than New Orieans. How high is Driskill Mountain?
\$35	535 ft
5. A submarine submerged at a depth of -40 ft dives 57 ft more. What is the new depth of the submarine? $-97 \mathrm{ft}$	6. An airplane at $20,000 \mathrm{ft}$ drops $2,500 \mathrm{ft}$ in altitude. What is the $17,500 \mathrm{ft}$
Choose the letter for the best answer.	
7. Last week, Jane made deposits of $\$ 64, \$ 25$, and $\$ 37$ into her checking account. She then wrote checks for $\$ 52$ and $\$ 49$. What is the overall change in Jane's account balance?	8. In Indianapolis, Indiana, the coldest recorded temperature was $-27^{\circ} \mathrm{F}$. The hottest recorded temperature was $1344^{\circ} \mathrm{F}$ higher. What was the hottest temperature in Indianapolis?
A -599 C \$126	F $150{ }^{\circ} \mathrm{F}$ H $107^{\circ} \mathrm{F}$
B \$25 D \$227	G 127 ${ }^{\circ} \mathrm{F} \quad 1-150^{\circ} \mathrm{F}$
9. Helena borrowed $\$ 189$ from her parents to buy an electric bass. She week. How much does Helena still owe her parents?	10. The Aral Sea and the Caspian Sea are actually lakes. The elevation of level. The Aral Sea is 217 feet higher. What is the elevation of the Aral Sea?
A $\$ 133 \quad$ C $\$ 69$	F -125t H 309 tt
B $\$ 120 \quad$ D $\$ 29$	G -309 th I ${ }^{\text {125 }}$ t

Ongoing Assessment

Monitor During the Lesson
2-2 Learn It, Worktext pp. 39-41
2-2 Summarize It, Worktext p. 42

Assess After the Lesson
2-2 Lesson Quiz, TE p. 71

Answers

52.

54. Possible answer: First add integers with like signs. The sign of the sum is the sign of the integers. Then add unlike integers by finding the difference of their absolute values. Use the sign of the integer with the greater absolute value.

Test Prep
For Exercise 57, students Doctor can eliminate choice \mathbf{G} right away because it involves the sum of two negative numbers.

Journal

Have students describe real-world situations in which integer addition is used (e.g., changes in temperature, altitude, or stock prices). Ask students to explain how to find the sum.

Power Presentations

with PowerPoint ${ }^{\circledR}$

2-2

Lesson Quiz

1. Use a number line to find the sum $-7+(-6)$.
-13
Find each sum.
2. $-15+24+(-9) \quad 0$
3. $-24+7+(-3) \quad-20$
4. Evaluate $x+y$ for $x=-2$ and $y=-15$.
-17
5. The math club's income from a bake sale was $\$ 217$. Advertising expenses were $\$ 32$. Use integer addition to find the club's total profit or loss. $\$ 185$ profit

Also available on transparency
\qquad
\qquad
\qquad

Lesson Practice A

2-3 Subtracting Integers

Show the subtraction on the number line. Then write

 the difference.1. $3-8$
2. $-5-(-1)$

\qquad
\qquad
Find each difference.
3. $-3-4$
4. $-7-(-2)$
5. $12-6$
6. $2-(-7)$
7. $-8-8$
8. $-5-(-5)$
9. $-1-(-2)$
10. $9-(-3)$
11. $8-1$
12. $7-(-9)$
13. $-3-8$
14. $-3-(-7)$

Evaluate $\boldsymbol{x}-\boldsymbol{y}$ for each set of values.
15. $x=6, y=-3$
16. $x=-7, y=1$
17. $x=-2, y=-5$
18. $x=9, y=11$
19. $x=-1, y=-1$
20. $x=-5, y=5$
21. The high temperature one day was $6^{\circ} \mathrm{F}$. The low temperature was $-3^{\circ} \mathrm{F}$. What was the difference between the high and low temperatures for the day?
22. The temperature changed from $-7^{\circ} \mathrm{F}$ at 6 A.M. to $7{ }^{\circ} \mathrm{F}$ at noon. How much did the temperature increase?
\qquad

Challenge

1. -13
2. -22
3. -22
4. -27
5. -2
6. -16
7. -19
8. -5
9. -18
10. $>$
11. $=$
12. $>$
13. $>$
14. $<$
15. $>$
16. $<$
17. $<$
18. <
19. Answers will vary.
20. Possible answer: chalk
21. Possible answer: bench
22. Answers will vary.

Problem Solving

1. $5^{\circ} \mathrm{F}$
2. $-22^{\circ} \mathrm{F}$
3. $\$ 35$
4. 535 ft
5. -97 ft
6. $17,500 \mathrm{ft}$
7. B
8. H
9. C
10. I

Reading Strategies

1. 0
2. to the right; 6
3. to the left; 4
4. 0
5. to the left; 5
6. to the left; 3

Puzzles, Twisters \& Teasers
R: -9
S: 7
L: -19
H: -88
O: -6
E: -18
C: 39
W: 25
D: 13
A: -17
T: -16
N: 1
SHEWANTED
COLD HARD CASH

LESSON 2-3

Practice A

2.

$$
-4
$$

3. -7
4. -5
5. 6
6. 9
7. -16
8. 0
9. 1
10. 12
11. 7
12. 16
13. -11
14. 4
15. 9
16. -8
17. 3
18. -2
19. 0
20. $9^{\circ} \mathrm{F}$
21. -10
22. $14{ }^{\circ} \mathrm{F}$

Practice B

2.

6
3. -10
4. 5
5. -4
6. 24
7. 0
8. 46
\qquad
\qquad

LEsson Reading Strategies
 2-3 Use Graphic Aids

Brett borrowed $\$ 7$ from his father to buy a CD. He paid back $\$ 3$. How much money does Brett have now? The number line will help you picture this problem.

1. Beginning at 0 , in which direction will you move first? \qquad
2. How many places? \qquad
3. Which direction do you move next? \qquad
4. How many places? \qquad
5. On what number do you end? \qquad
Bret does not have any money. He owes his dad \$4. He has negative \$4.

Sally and her friends made up a game with points. You can either win or lose up to ten points on each round of the game. After the first round, Sally's team had 2 points. In the second round they lost 6 points. How many points was Sally's team down by after the second round?

The number line will help you picture the problem.

6. Beginning at zero, which direction will you move first? How many places?
7. Which direction will you move next? How many places?
\qquad
8. By how many points was Sally's team down? \qquad
9. -1
10. 42
11. -6
12. -26
13. 30
14. -5
15. 16
16. -22
17. 7
18. 0
19. 29
20. -5
21. $4^{\circ} \mathrm{F}$
22. $7^{\circ} \mathrm{F}$

Practice C
1.

-3
2.

-6
3. -31
4. -12
5. -16
6. 38
7. 66
8. -74
9. 0
10. -52
11. -48
12. 10
13. -7
14. -12
15. 14
16. 0
17. -20
18. 25
19. -57
20. $144^{\circ} \mathrm{F}$
21. $-5^{\circ} \mathrm{F}$

Review for Mastery

1. a. 5 ; b. -1 ; c. 20
2. a. negative; b. 2; c. -2
3. a. positive; b. 8; c. 8
4. 40
5. -3
6. -26
7. 0
8. 31
9. -5

Challenge

Temperature Facts	${ }^{\circ} \mathbf{F}$
Louisiana's lowest	-16°
Texas's highest	120°
Fairbanks normal January	-10°
Tampa normal July	82°
Lowest in Detroit in 2000	-3°
Highest in Norfolk in 2000	96°
North Carolina's lowest	-34°
South Carolina's lowest	-19°

Highest and Lowest Points on Continents	Elevation
Death Valley, North America	-282 ft
Caspian Sea, Europe	-92 ft
Mount Everest, Asia	$29,035 \mathrm{ft}$
Mount McKinley, North America	$20,320 \mathrm{ft}$
Lake Eyre, Australia	-52 ft
Dead Sea, Asia	$-1,348 \mathrm{ft}$
Mount Elbrus, Europe	$18,510 \mathrm{ft}$
Lake Assal, Africa	-512 ft

Problem Solving

1. $610{ }^{\circ} \mathrm{C}$
2. $\$ 35,000$
3. $\$ 118,000$
4. $240{ }^{\circ} \mathrm{C}$
5. B
6. I
7. D
8. F

Reading Strategies

1. to the left
2. 7
3. to the right
4. 3
5. -4
6. to the right; 2
7. to the left; 6
8. 4
\qquad
\qquad
\qquad

LEsson Review for Mastery
 2-3 Subtracting Integers

The total value of the three cards shown is -6 .

What if you take away the 3 card?
Cards -4 and -5 are left.
The new value is -9 . $-6-3=-9$

What if you take away the -4 card?
Cards 3 and -5 are left.
The new value is -2 .

$$
-6-(-4)=-2
$$

Answer each question.

1. Suppose you have the cards shown. The total value of the cards is 12.

a. What if you take away the 7 card?
$12-7=$ \qquad
b. What if you take away the 13 card?
$12-13=$ \qquad
c. What if you take away the -8 card?
$12-(-8)=$ \qquad
2. Subtract $-4-(-2)$.
a. $-4<-2$. Will the answer be positive or negative? \qquad
b. $|4|-|2|=$ \qquad
c. $-4-(-2)=$ \qquad
3. Subtract $21-13$.
a. $21>13$. Will the answer be positive or negative? \qquad
b. $|21|-|13|=$ \qquad
c. $21-13=$ \qquad

Subtract.

4. $31-(-9)=$ \qquad
5. $15-18=$ \qquad 6. $-9-17=$ \qquad
6. $-8-(-8)=$ \qquad
7. $29-(-2)=$ \qquad
8. $13-18=$ \qquad
9. -1
10. 42
11. -6
12. -26
13. 30
14. -5
15. 16
16. -22
17. 7
18. 0
19. 29
20. -5
21. $4^{\circ} \mathrm{F}$
22. $7^{\circ} \mathrm{F}$

Practice C
1.

-3
2.

-6
3. -31
4. -12
5. -16
6. 38
7. 66
8. -74
9. 0
10. -52
11. -48
12. 10
13. -7
14. -12
15. 14
16. 0
17. -20
18. 25
19. -57
20. $144^{\circ} \mathrm{F}$
21. $-5^{\circ} \mathrm{F}$

Review for Mastery

1. a. 5 ; b. -1 ; c. 20
2. a. negative; b. 2; c. -2
3. a. positive; b. 8; c. 8
4. 40
5. -3
6. -26
7. 0
8. 31
9. -5

Challenge

Temperature Facts	${ }^{\circ} \mathbf{F}$
Louisiana's lowest	-16°
Texas's highest	120°
Fairbanks normal January	-10°
Tampa normal July	82°
Lowest in Detroit in 2000	-3°
Highest in Norfolk in 2000	96°
North Carolina's lowest	-34°
South Carolina's lowest	-19°

Highest and Lowest Points on Continents	Elevation
Death Valley, North America	-282 ft
Caspian Sea, Europe	-92 ft
Mount Everest, Asia	$29,035 \mathrm{ft}$
Mount McKinley, North America	$20,320 \mathrm{ft}$
Lake Eyre, Australia	-52 ft
Dead Sea, Asia	$-1,348 \mathrm{ft}$
Mount Elbrus, Europe	$18,510 \mathrm{ft}$
Lake Assal, Africa	-512 ft

Problem Solving

1. $610{ }^{\circ} \mathrm{C}$
2. $\$ 35,000$
3. $\$ 118,000$
4. $240{ }^{\circ} \mathrm{C}$
5. B
6. I
7. D
8. F

Reading Strategies

1. to the left
2. 7
3. to the right
4. 3
5. -4
6. to the right; 2
7. to the left; 6
8. 4

Lesson Success for Every Learner

2-3 Subtracting Integers

Steps for Success

Step I Make sure that students understand the text in the lesson opener by using the following procedures.

- Discuss with students how a space shuttle re-enters the Earth's atmosphere. Explain the varying temperatures that the spacecraft has to endure and that engineers have to account for these vast temperature differences when designing a space shuttle.
- Refer students to Problem 1 on the worksheet. This corresponds to the lesson opener and Example 4 in the text. Use the thermometer to show the difference between the two temperatures.
- Explain that a thermometer is like a number line. Numbers above zero are positive temperatures, and numbers below zero are negative temperatures.
- Discuss why you add 3,000 and 250 to determine the temperature difference. Relate the difference to distance on a number line.

Step II Ask the students to complete the worksheet for this lesson.

- Point out that Problem 2 on the worksheet supports Example 2A and 2 C in the student textbook.
- Ask students to explain the word opposite. Relate their ideas to the concept of "opposite numbers."
- Think and Discuss supports the worksheet.

Step III Teach the lesson.

Making Connections

- To reinforce the idea of subtracting integers, use an example with elevation. For example, a skydiver jumps from a plane 200 feet above the water. When she hits the water she descends 20 feet below the surface of the water. Find the total distance the diver traveled from the plane.
- Create a large number line across the width of the classroom. Physically demonstrate the distance between two numbers. Place one student at 0 , one at -6 and one at 2 . Have the rest of the class determine the distance between the two "points." Repeat the demonstration with different students and different "points" on the number line.
\qquad Date \qquad Class \qquad

LEsson Student Worksheet

2-3 Subtracting Integers

Problem 1

Problem 2

Think and Discuss

1. Why do you add $3,000^{\circ}$ and 250° in Problem 1?
2. In Problem 2, what is the opposite of 9 ? \qquad
3. Why do you not change the -4 to +4 in Problem 2 ?
4. Is $3-5$ the same as $5-3$? Explain.

Lesson 2-1

Think and Discuss

1. 2
2. 2

Lesson 2-2

Think and Discuss

1. different signs
2. add
3. add; -9

Lesson 2-3

Think and Discuss

1. When you find the difference between a positive number and a negative number, you add.
2. -9
3. You are not adding or subtracting -4 , you are subtracting 3 from -4 .
4. No, they are opposites.

Lesson 2-4

Think and Discuss

1. Because both numbers have the same sign. The quotient of two same signed numbers is positive.
2. Yes; The quotient is -2 in both cases.

Lesson 2-5

Think and Discuss

1. n
2. use subtraction
3. The equation is a true statement when $n=-13$.
4. when $n=-1$
5. when $n=1$
6. when $n=1$
7. when $n=-1$

Lesson 2-6

Think and Discuss

1. The variable is not alone on one side.
2. There are 12 months in the year.

3 . The coefficient of m would need to be 365 .

Lesson 2-7

Think and Discuss

1. 4
2. It would be the same.

Lesson 2-8

Think and Discuss

1. $1,2,3,4,6$, and 12
2. Because 6 is not the greatest factor that 24,36 , and 48 have in common.
3. In both methods you are finding common factors, and determining the greatest factor that the numbers have in common.

Lesson 2-9

Think and Discuss

1. It is the common multiple of both numbers with the least value.
2. Because 2 is a factor common to both numbers.

Lesson 2-10

Think and Discuss

1. Cher ate the same amount. $\frac{3}{4}$ is equivalent to $\frac{6}{8}$ and $\frac{9}{12}$.

Lesson 2-11

Think and Discuss

1. terminating decimal; the decimal comes to an end.
2. tenths
3. thousandths $=\frac{36}{1,000}$
4. Yes; $0.333 \ldots$ is a repeating decimal and 0.3 is a terminating decimal.

Assignment Guide

If you finished Example 1 assign:
Average 1-4, 13-20, 58-64
Advanced 13-20, 49, 58-64
If you finished Example 2 assign:
Average 1-8, 13-28, 36-44, 56, 58-64
Advanced 13-28, 39-44, 49, 56, 58-64
If you finished Example 3 assign:
Average 1-11, 13-34, 36-49, 56-64
Advanced 13-34, 36-49, 56-64
If you finished Example 4 assign:
Average 1-41, 45-51, 56-60, 64
Advanced 13-35, 39-64

Homework Quick Check

Quickly check key concepts.
Exercises: 14, 18, 22, 30, 32, 35
O = WORKED-OUT SOLUTIONS on p . WS3

Interactive Answers and Solutions

Math Background

Subtraction is formally defined as addition of the opposite-or additive inverse. The integers are closed under the operations of addition and subtraction, which means that adding or subtracting any two integers will produce another integer.

GUIDED PRACTICE

See Example 1 Use a number line to find each difference.

1. $4-7-3$
2. $-6-5-11$
3. $2-(-4) 6$
4. $-8-(-2)-6$

See Example 2 Find each difference.
5. $6-10-4$
6. $-3-(-8) 5$
7. $-1-9-10$
8. $-12-(-2)$

See Example 3 Evaluate $\boldsymbol{a} \boldsymbol{-} \boldsymbol{b}$ for each set of values.
9. $a=5, b=-27$
10. $a=-8, b=6-14$
11. $a=4, b=18-14$

See Example 4 12. In 1980, in Great Falls, Montana, the temperature rose from $-32^{\circ} \mathrm{F}$ to $15{ }^{\circ} \mathrm{F}$ in seven minutes. How much did the temperature increase? $47^{\circ} \mathrm{F}$

INDEPENDENT PRACTICE

See Example
Use a number line to find each difference.
13. $7-12-5$
14. $-5-(-9) 4$
15. $2-(-6) 8$
16. $7-(-8) 15$
17. $9-(-3) 12$
18. $-4-10-14$
19. $8-(-8) 16$
20. $-3-(-3) 0$

See Example
Find each difference.
21. $-22-(-5)-1722 .-4-21-25$
23. $27-19 \quad 8$
24. $-10-(-7)^{-3}$
25. $30-(-20) 50$ 26. $-15-15-30$
27. $12-(-6) 18$
28. $-31-15-46$

See Example
Evaluate $\boldsymbol{a} \boldsymbol{-} \boldsymbol{b}$ for each set of values.
29. $a=9, b=-7 \quad 16$
30. $a=-11, b=2-13$
31. $a=-2, b=3-5$
32. $a=8, b=19-11$
33. $a=-10, b=10-20$
34. $a=-4, b=-1511$

See Example 4 35. In 1918, in Granville, North Dakota, the temperature rose from $-33^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{F}$ in 12 hours. How much did the temperature increase? $83^{\circ} \mathrm{F}$

PRACTICE AND PROBLEM SOLVING

Simplify.
36. $2-8-6$
37. $-5-9 \quad-14$
38. $15-12-8-5$
39. $6+(-5)-3-2$
40. $1-8+(-6)-13$
41. $4-(-7)-9 \quad 2$
42. $(2-3)-(5-6) 0$
43. $5-(-8)-(-3) 16$
44. $10-12+2 \quad 0$

Evaluate each expression for $m=-5, n=8$, and $p=-14$.
45. $m-n+p-27$ 46. $n-m-p 27$ 47. $p-m-n-17$ 48. $m+n-p 17$
49. Patterns Find the next three numbers in the pattern $7,3,-1,-5,-9, \ldots$ Then describe the pattern.
$-13,-17,-21$; Subtract 4.

REVIEW FOR MASTERY 2-3

50. The temperature of Mercury can be as high as $873^{\circ} \mathrm{F}$. The temperature of Pluto is about $-393{ }^{\circ} \mathrm{F}$. What is the difference between these temperatures? $1,266^{\circ} \mathrm{F}$
51. One side of Mercury always faces the Sun. The temperature on this side can reach $873^{\circ} \mathrm{F}$. The temperature on the other side can be as low as $-361{ }^{\circ} \mathrm{F}$. What is the difference between the two temperatures? $1,234{ }^{\circ} \mathrm{F}$
52. Earth's moon rotates relative to the Sun about once a month. The side facing the Sun at a given time can be as hot as $224^{\circ} \mathrm{F}$. The side away from the Sun can be as cold as $-307^{\circ} \mathrm{F}$. What is the difference between these temperatures? $\quad 531^{\circ} \mathrm{F}$
53. The highest recorded temperature on Earth is $136^{\circ} \mathrm{F}$. The lowest is $-129^{\circ} \mathrm{F}$. What is the difference between these temperatures? $265^{\circ} \mathrm{F}$
Use the graph for Exercises 54 and 55.
54. How much deeper is the deepest canyon on Mars than the deepest canyon on Venus? 16,500 ft
55. Challenge What is the difference between Earth's highest mountain and its deepest ocean canyon? What is the difference between Mars' highest mountain and its deepest canyon? Which difference is greater? How much greater is it? $65,233 \mathrm{ft}$; 96,000 ft; 96,000 ft (Mars); 30,767 ft

Florida Spiral Review

MA.7.A.3.1, MA.7.A.3.2

56. Multiple Choice Which expression does NOT have a value of -3 ?
A. $-2-1$
B. $10-13$
(C.) $5-(-8)$
D. $-4-(-1)$
57. Extended Response If $m=-2$ and $n=4$, which expression has the $m+n$ has the least absolute value: $m+n, n-m$, or $m-n$? Explain your answer. least absolute value. $m+n=2$, and $|2|=2 . n-m=6$, and $|6|=6 . m-n=-6$, and $|-6|=6$. Evaluate each expression for the given values of the variables. (Lesson 1-4)
58. $3 x-5$ for $x=2 \quad 1$
59. $2 n^{2}+n$ for $n=13$
60. $4 y^{2}-3 y$ for $y=210$
61. $4 a+7$ for $a=3 \quad 19$
62. $x^{2}+9$ for $x=110$
63. $5 z+z^{2}$ for $z=324$
64. Sports In three plays, a football team gained 10 yards, lost 22 yards, and gained 15 yards. Use integer addition to find the team's total yardage for the three plays. (Lesson 2-2) gain of 3 yards

Ongoing Assessment

and INTERVENTION $\sim \square$

Diagnose Before the Lesson 2-3 Warm Up, TE p. 72

Monitor During the Lesson
2-3 Learn It, Worktext pp. 47-49
2-3 Summarize It, Worktext p. 50

Assess After the Lesson
2-3 Lesson Quiz, TE p. 75

Interdisciplinary

Astronomy

Exercises 50-55 involve temperature and elevation data from various planets.
$\begin{array}{ll}\text { Test Prep } & \text { For Exercise 56, students } \\ \text { Doctor }+ & \text { should first notice that }\end{array}$ the directions ask which expression does NOT have a value of -3 . If students miss this, they may immediately choose \mathbf{A}. If students scan the answer choices, they will notice that C involves subtracting a negative number from a positive one. This choice results in a positive number.

Journal

Have students explain how to subtract a negative integer as if they were explaining it to another student who missed this lesson.

Power Presentations

 with PowerPoint ${ }^{\text {® }}$
2-3 Lesson Quiz

1. Use a number line to find the difference.
3-9-6
Find each difference.
2. $-7-4 \quad-11$
3. $-3-(-5) 2$
4. Evaluate $x-y+z$ for $x=-4$, $y=5$, and $z=-10 . \quad-19$
5. On January 1 , the high temperature was $81^{\circ} \mathrm{F}$ in Kona, Hawaii. The low temperature was $-29^{\circ} \mathrm{F}$ in Barrow, Alaska. What was the difference between the two temperatures? $110^{\circ} \mathrm{F}$
\qquad Date \qquad
\qquad

Lesson Practice A

2-4 Multiplying and Dividing Integers

Find each product.

1. $6 \cdot(-1)$
2. $-4 \cdot 2$
3. $-3 \cdot(-4)$
4. $-2 \cdot 8$
5. $5 \cdot(-7)$
6. $-7 \cdot 9$
7. $8 \cdot 4$
8. $-3 \cdot(-5)$
9. $-5 \cdot(-5)$
10. $8 \cdot(-4)$
11. $-7 \cdot(-6)$
12. $9 \cdot(-8)$

13. $1 \cdot(-7)$

14. $-4 \cdot(-5)$
15. $-6 \cdot 3$
16. $-7 \cdot(-7)$

Find each quotient.
17. $12 \div(-4)$
18. $-15 \div(-3)$
19. $-20 \div 5$
20. $-27 \div(-9)$
21. $-45 \div(-5)$
22. $-18 \div 9$
23. $24 \div(-4)$
24. $32 \div 4$
25. $21 \div 3$
26. $-36 \div(-4)$
27. $16 \div(-4)$
28. $-56 \div 8$
\qquad
29. $-42 \div 7$
30. $-30 \div(-6)$
31. $27 \div 9$
32. $25 \div 0$
\qquad
33. A scientist is measuring the temperature change in a chemical compound. The temperature dropped $11^{\circ} \mathrm{F}$ per hour from the original temperature. After 4 hours, the temperature was $90^{\circ} \mathrm{F}$. Find the compound's original temperature.
\qquad
34. A mountain climber ascends 800 feet per hour from his original position. After 6 hours, his final position is 11,600 feet above sea level. Find the climber's original position.
\qquad

Puzzles, Twisters \& Teasers
C: -10
A: -9
J: 5
$\mathrm{N}:-4$
B: -46
U: 18
O: -30
I: 50
G: -17
D: -25
Y: 8
E: -3
R: -7
T: -14
F: -6
AN UNIDENTIFIED F R Y I N G O B J E C T

LESSON 2-4

Practice A

1. -6
2. 12
3. -35
4. 32
5. 25
6. 42
7. -7
8. -18
9. -3
10. -4
11. 9
12. -6
13. 7
14. -4
15. -6
16. 3
17. $133^{\circ} \mathrm{F}$
18. -8
19. -16
20. -63
21. 15
22. -32
23. -72
24. 20
25. 49
26. 5
27. 3
28. -2
29. 8
30. 9
31. -7
32. 5
33. undefined
34. 6,800 feet

Practice B

1. $-40 \quad$ 2. -28
2. 18
3. -8
4. -36
5. -45
6. 48
7. 21
8. 36
9. 16
10. 80
11. -54
12. -5
13. -2
14. 6
15. -6
16. -4
17. 9
18. -7
19. 5
20. \$603

Practice C

1. -72
2. -49
3. 30
4. -32
5. -120
6. -150
7. 80
8. 120
9. 35
10. -90
11. 64
12. -36
13. -72
14. -60
15. 125
16. -300
17. -9
18. -4
19. 8
20. -8
21. -11
22. 25
23. -4
24. 4
25. 17 feet below sea level
26. -27
27. -35
28. -45
29. 44
30. 9
31. 7
32. undefined
33. 9
34. -5
35. 5
36. 8
37. undefined
38. $69{ }^{\circ} \mathrm{F}$
\qquad
\qquad
\qquad

LEsson Reading Strategies
 2-4 Use Graphic Aids

The opposite of 5 is negative 5 . Owing money is the opposite of having money. Owing $\$ 5$ is the opposite of having $\$ 5$.

1. What is the opposite of owing $\$ 10$? \qquad
2. What is the opposite of having $\$ 17$? \qquad
David borrowed $\$ 4$ from his mother each of the last three months. How much money does he owe his mother? The money he owes his mother is a negative number. This problem can be pictured on a number line.

$$
3 \cdot(-4)=-12
$$

Use the number line to help you answer the questions.

3. Starting at zero, which direction do you move first? \qquad
4. How many places do you move? \qquad
5. Which direction do you move next? \qquad
6. How many places do you move? \qquad
7. Which direction do you move next? \qquad
8. How many places do you move? \qquad
9. How much money does David owe his mother? \qquad
10. If David borrowed $\$ 4$ for one more month, how much would he owe his mother? \qquad

G: 6

1. -20
2. -16
3. 1
4. -18
5. -21
6. 32
7. -30
8. 81
9. -9
10. -3
11. 4
12. -6
13. 3
14. -4
15. -5
16. 4

Challenge

Phil	Sam
85 yd	106 yd
$-1,282 \mathrm{yd}$	$-1,482 \mathrm{yd}$
$-1,197 \mathrm{yd}$	$-1,376 \mathrm{yd}$
-74.8 yd	-86 yd
	\checkmark

Problem Solving

1. $-2^{\circ} \mathrm{F}$
2. $1^{\circ} \mathrm{F}$
3. $3^{\circ} \mathrm{F}$
4. $-1^{\circ} \mathrm{F}$
5. C
6. H
7. C
8. H

Reading Strategies

1. having $\$ 10$
2. owing \$17
3. to the left
4. 4
5. to the left
6. 4
7. to the left
8. 4
9. $\$ 12$
10. \$16

Puzzles, Twisters \& Teasers
H: -9
E: 8
$\mathrm{N}:-8$
T: -12
I: 9
S: -6
C: -4

A: 12
R: 10
WHEN THERE IS CHANGE IN THE WEATHER

LESSON 2-5

Practice A

1. $n=4$
2. $x=-3$
3. $a=12$
4. $y=-2$
5. $c=-10$
6. $v=-1$
7. $j=-2$
8. $k=-8$
9. $s=5$
10. $m=10$
11. $d=-18$
12. $r=-28$
13. $p=-14$
14. $b=-3$
15. $f=8$
16. $n=-24$
17. $k=-7$
18. $a=-4$
19. $x=6$
20. $e=9$
21. $m=6$
22. $\$ 20$

Practice B

1. $y=1$
2. $n=-5$
3. $x=28$
4. $p=-4$
5. $q=-8$
6. $w=-4$
7. $h=-4$
8. $b=-12$
9. $u=25$
10. $d=-35$
11. $c=-80$
12. $s=-81$
13. $f=-31$
14. $v=-25$
15. $g=-2$
16. $s=7$
17. $m=-24$
18. $w=48$
19. $x=-16$
20. $e=-56$
21. $n=27$
22. $-44^{\circ} \mathrm{F}$
23. \$10

Practice C

1. $h=-2$
2. $a=17$
3. $g=33$
4. $m=-17$
\qquad
\qquad
\qquad

LESSoN Review for Mastery
 2-4
 Multiplying and Dividing Integers

Look for the patterns in these products and quotients.

$1 \cdot 3=3$	$-1 \cdot 3=-3$	$3 \div 1=3$	$3 \div(-1)=-3$
$2 \cdot 3=6$	$-2 \cdot 3=-6$	$6 \div 2=3$	$6 \div(-2)=-3$
$-3 \cdot(-3)=9$	$3 \cdot(-3)=-9$	$-9 \div(-3)=3$	$-9 \div 3=-3$
$-4 \cdot(-3)=12$	$4 \cdot(-3)=-12$	$-12 \div(-4)=3$	$-12 \div 4=-3$

Look at how to find the signs of the products.

- The product of two integers with the same sign is positive.
$(+) \cdot(+)=(+)$
$(-) \cdot(-)=(+)$
- The product of two integers with different signs is negative.

$$
(+) \cdot(-)=(-) \quad(-) \cdot(+)=(-)
$$

Look at how to find the signs of the quotients.

- The quotient of two integers with the same sign is positive.

$$
(+) \div(+)=(+) \quad(-) \div(-)=(+)
$$

- The quotient of two integers with different signs is negative.

$$
(+) \div(-)=(-) \quad(-) \div(+)=(-)
$$

Find each product or quotient.

1. $-5 \cdot 4$
2. $2 \cdot(-8)$
3. $-1 \cdot(-1)$
4. $-6 \cdot 3$
5. $7 \cdot(-3)$
6. $-8 \cdot(-4)$
7. $-6 \cdot 5$
8. $-9 \cdot(-9)$
9. $36 \div(-4)$
10. $-27 \div 9$
11. $-24 \div(-6)$
12. $-30 \div 5$
13. $18 \div 6$
14. $32 \div(-8)$
15. $-45 \div 9$
16. $-40 \div(-10)$

G: 6

1. -20
2. -16
3. 1
4. -18
5. -21
6. 32
7. -30
8. 81
9. -9
10. -3
11. 4
12. -6
13. 3
14. -4
15. -5
16. 4

Challenge

Phil	Sam
85 yd	106 yd
$-1,282 \mathrm{yd}$	$-1,482 \mathrm{yd}$
$-1,197 \mathrm{yd}$	$-1,376 \mathrm{yd}$
-74.8 yd	-86 yd
	\checkmark

Problem Solving

1. $-2^{\circ} \mathrm{F}$
2. $1^{\circ} \mathrm{F}$
3. $3^{\circ} \mathrm{F}$
4. $-1^{\circ} \mathrm{F}$
5. C
6. H
7. C
8. H

Reading Strategies

1. having $\$ 10$
2. owing \$17
3. to the left
4. 4
5. to the left
6. 4
7. to the left
8. 4
9. $\$ 12$
10. \$16

Puzzles, Twisters \& Teasers
H: -9
E: 8
$\mathrm{N}:-8$
T: -12
I: 9
S: -6
C: -4

A: 12
R: 10
WHEN THERE IS CHANGE IN THE WEATHER

LESSON 2-5

Practice A

1. $n=4$
2. $x=-3$
3. $a=12$
4. $y=-2$
5. $c=-10$
6. $v=-1$
7. $j=-2$
8. $k=-8$
9. $s=5$
10. $m=10$
11. $d=-18$
12. $r=-28$
13. $p=-14$
14. $b=-3$
15. $f=8$
16. $n=-24$
17. $k=-7$
18. $a=-4$
19. $x=6$
20. $e=9$
21. $m=6$
22. $\$ 20$

Practice B

1. $y=1$
2. $n=-5$
3. $x=28$
4. $p=-4$
5. $q=-8$
6. $w=-4$
7. $h=-4$
8. $b=-12$
9. $u=25$
10. $d=-35$
11. $c=-80$
12. $s=-81$
13. $f=-31$
14. $v=-25$
15. $g=-2$
16. $s=7$
17. $m=-24$
18. $w=48$
19. $x=-16$
20. $e=-56$
21. $n=27$
22. $-44^{\circ} \mathrm{F}$
23. \$10

Practice C

1. $h=-2$
2. $a=17$
3. $g=33$
4. $m=-17$

Lisson Success for Every Learner

2-4 Multiplying and Dividing Integers

Steps for Success

Step I Review multiplication of whole numbers.

- Reassure students that the process of multiplying and dividing integers is the same as with whole numbers except that the product or quotient has a positive or negative sign.
Step II Ask the students to complete the worksheet for this lesson. Point out the following.
- Problem 1 on the worksheet corresponds to the rules given in the student textbook for multiplying and dividing integers. Slowly call out two numbers and an operation, giving emphasis to the words "positive" and "negative" ("negative 3 times negative 2"). Have students place a finger on the rule that leads to the correct sign of the product.
- Problem 2 on the worksheet supports Example 3B in the student textbook. Ask students if the 100 is a positive or negative number. Then ask if the 5 is a positive or negative number. Have students write the sign of each number directly below each number. Discuss why they think the quotient is positive or negative. Ask students to point to the rule in Problem 1 that applies to this problem.
- Think and Discuss supports the worksheet.

Step III Teach the lesson.

Making Connections

- Verify that students understand that the product of a positive and a negative number is less than the product of the exact two numbers with the same sign, both being positive, or both being negative, by having them compare the products on a number line.
For instance, $-3 \times 4=-12$ and $-3 \times-4=12$. $-12<12$
- Use a large number line to physically demonstrate repeated subtraction. Relate this concept to the product of a positive number and a negative number; $4 \times-3=-3-3-3-3=-12$.
- Have students write positive and negative numbers from 1 to 15 on index cards. Working in pairs, have students place the cards face down. One student turns over two cards and has to find the product of the two numbers and state whether the product is positive or negative.
- As students begin the application problems, discuss unknown vocabulary. Come up with similar meaning words to make the problems easier to solve.
\qquad Date \qquad Class \qquad

LEsson Student Worksheet

2-4 Multiplying and Dividing Integers

Problem 1

The rules for multiplying and dividing integers are the same.

Same signs \longrightarrow Positive
$(+) \cdot(+)=+$
$(-) \cdot(-)=+$
$(+) \div(+)=+$
$(-) \div(-)=+$

Different signs \longrightarrow Negative
$(-) \cdot(+)=-\quad(+) \cdot(-)=-$
$(+) \div(-)=-$
$(-) \div(+)=-$
Determine if each product or quotient is positive, + , or negative, - .
$(-3) \cdot(-3) \longrightarrow$ positive, +
$6 \div(-3) \longrightarrow$ negative, -

Problem 2

When dividing integers, follow these steps:

1. Divide the integers.
2. Look at the signs of each number to give the answer a sign.

Think and Discuss

1. Why is the quotient of $-100 \div(-5)$ the same as the quotient of $100 \div 5$?
\qquad
\qquad
2. Is $6 \div(-3)$ the same as $-6 \div 3$? Explain.

Lesson 2-1

Think and Discuss

1. 2
2. 2

Lesson 2-2

Think and Discuss

1. different signs
2. add
3. add; -9

Lesson 2-3

Think and Discuss

1. When you find the difference between a positive number and a negative number, you add.
2. -9
3. You are not adding or subtracting -4 , you are subtracting 3 from -4 .
4. No, they are opposites.

Lesson 2-4

Think and Discuss

1. Because both numbers have the same sign. The quotient of two same signed numbers is positive.
2. Yes; The quotient is -2 in both cases.

Lesson 2-5

Think and Discuss

1. n
2. use subtraction
3. The equation is a true statement when $n=-13$.
4. when $n=-1$
5. when $n=1$
6. when $n=1$
7. when $n=-1$

Lesson 2-6

Think and Discuss

1. The variable is not alone on one side.
2. There are 12 months in the year.

3 . The coefficient of m would need to be 365 .

Lesson 2-7

Think and Discuss

1. 4
2. It would be the same.

Lesson 2-8

Think and Discuss

1. $1,2,3,4,6$, and 12
2. Because 6 is not the greatest factor that 24,36 , and 48 have in common.
3. In both methods you are finding common factors, and determining the greatest factor that the numbers have in common.

Lesson 2-9

Think and Discuss

1. It is the common multiple of both numbers with the least value.
2. Because 2 is a factor common to both numbers.

Lesson 2-10

Think and Discuss

1. Cher ate the same amount. $\frac{3}{4}$ is equivalent to $\frac{6}{8}$ and $\frac{9}{12}$.

Lesson 2-11

Think and Discuss

1. terminating decimal; the decimal comes to an end.
2. tenths
3. thousandths $=\frac{36}{1,000}$
4. Yes; $0.333 \ldots$ is a repeating decimal and 0.3 is a terminating decimal.
\qquad
\qquad
\qquad

Lesson Practice A

2-11 Equivalent Fractions and Decimals

Write each fraction as a decimal. Round to the nearest hundredth, if necessary.

1. $\frac{2}{3}$
2. $\frac{9}{20}$ \qquad
3. $\frac{3}{4}$
4. $\frac{20}{25}$
5. $\frac{3}{8}$ \qquad
6. $\frac{7}{5}$ \qquad
7. $\frac{21}{7}$ \qquad
8. $\frac{5}{3}$
\qquad
9. $\frac{4}{9}$ \qquad
10. $\frac{4}{5}$ \qquad
11. $\frac{1}{25}$
12. $\frac{3}{20}$

Write each decimal as a fraction or mixed number in simplest form.
\qquad
16. 2.1
17. 5.25
\qquad
19. 1.8
20. -1.74
\qquad
22. -7.08
23. 0.625
24. 0.001
14. 0.03
15. -0.75
18. 9.33
\qquad
21. 10.6
\qquad
\qquad
\qquad

Write each answer as a decimal rounded to the nearest thousandth.
25. Out of 45 times at bat, Raul got 19 hits. Find Raul's batting average.
\qquad
26. On a test, Selena answered 26 out of 30 questions correctly.

What portion of her answers was correct?
\qquad

Puzzles, Twisters \& Teasers

$\frac{3}{5}$

IT SAW THE
SALAD DRESSING
LESSON 2-11

Practice A

1. 0.67
2. 0.45
3. 0.75
4. 0.8
5. 0.375
6. 1.4
7. 3.0
8. 1.67
9. 0.44
10. 0.8
11. 0.04
12. 0.15
13. $\frac{11}{20}$
14. $\frac{3}{100}$
15. $-\frac{3}{4}$
16. $2 \frac{1}{10}$ or $\frac{21}{10}$
17. $5 \frac{1}{4}$ or $\frac{21}{4}$
18. $9 \frac{33}{100}$ or $\frac{933}{100}$
19. $\frac{9}{5}$ or $1 \frac{4}{5}$
20. $-\frac{87}{50}$ or $-1 \frac{37}{50}$
21. $\frac{53}{5}$ or $10 \frac{3}{5}$
22. $-7 \frac{2}{25}$ or $-\frac{177}{25}$
23. $\frac{5}{8}$
24. $\frac{1}{1,000}$
25. 0.422

Practice B

1. 0.278
2. 0.95
3. 0.625
4. 2.2
5. 3.167
6. 4.25
7. 1.083
8. 4.286
9. 1.75
10. 0.889
11. 0.136
12. 0.08
13. $\frac{17}{20}$
14. $-\frac{1}{4}$
15. $\frac{11}{100}$
16. $4 \frac{3}{10}$ or $\frac{43}{10}$
17. $7 \frac{3}{4}$ or $\frac{31}{4}$
18. $5 \frac{3}{100}$ or $\frac{503}{100}$
19. $-1 \frac{3}{50}$ or $-\frac{53}{50}$
20. $\frac{3}{8}$
21. $-2 \frac{13}{20}$ or $-\frac{53}{20}$
22. $-5 \frac{3}{5}$ or $-\frac{28}{5}$
23. $1 \frac{3}{25}$ or $\frac{28}{25}$
24. $\frac{1}{200}$
25. 0.063
26. 0.853

Practice C

1. 0.417
2. 4.75
3. 3.571
4. 1.125
5. 5.667
6. 1.182
7. 1.667
8. 2.308
9. 0.714
10. 0.52
11. 0.259
12. 5.25
13. $\frac{1}{4}$
14. $\frac{13}{100}$
15. $-\frac{13}{20}$
16. $4 \frac{4}{5}$ or $\frac{24}{5}$
\qquad
\qquad Class \qquad

LEsson Reading Strategies

2-11 Compare and Contrast

Compare what happens when fractions are changed to decimals.
$\frac{\mathbf{2}}{5} \quad$ •Read $\frac{2}{5}$ as "2 divided by 5 ." •Write $\longrightarrow 2 \div 5$
Change a fraction to a decimal by dividing the numerator by the denominator.
$5 \longdiv { 0 . 4 }$
$5 \longdiv { 2 . 0 }$
$\begin{array}{rll}\frac{-20}{0} & \frac{2}{5}=0.4 & \begin{array}{l}\text { The dividing ends, or terminates, with no remainder. } \\ 0.4 \text { is called a terminating decimal. }\end{array}\end{array}$

1. Is there a remainder in the problem? How do you know?
2. What do we call a decimal that ends with no remainder?
$\frac{\mathbf{2}}{\mathbf{6}} \quad \cdot$ Read $\frac{2}{6}$ as "2 divided by 6." . Write $\longrightarrow 2 \div 6$
0.333
$6 \longdiv { 2 . 0 0 0 }$
-18
20
-18
$\begin{aligned} 20 \\ \frac{-18}{2}\end{aligned} \quad \frac{2}{6}=0.333 \ldots$ or $0 . \overline{3} \quad \begin{array}{r}\text { Note how dividing continues in a pattern. The } \\ \text { number } 0.333 \ldots \text { is a repeating decimal. The }\end{array}$

Answer each question.

3. Compare the division of $\frac{2}{5}$ to the division of $\frac{2}{6}$. What is the difference?
4. What is the name for a decimal with a remainder that has a repeating pattern?

\qquad
\qquad Class \qquad

LEsson Review for Mastery

2-11 Equivalent Fractions and Decimals

To write a fraction as a decimal, divide the numerator of the fraction by the denominator of the fraction.
Write $\frac{3}{7}$ as a decimal.

$$
\begin{gathered}
0.428 \\
7 \longdiv { 3 . 0 0 0 } \\
-\underline{28} \downarrow
\end{gathered}
$$

- Divide 3 by 7 .
- To round your answer to the nearest hundredth, add 3 zeros after the decimal point in the divisor.
0.428 rounded to the nearest 4 hundredth is 0.43 .

1. Write $\frac{2}{5}$ as a decimal. $\frac{2}{5}=$ \qquad

$$
5 \longdiv { 2 . 0 }
$$

\qquad

Write each fraction as a decimal. Round to the nearest thousandth, if necessary.
2. $\frac{3}{4}$
3. $\frac{7}{8}$
4. $\frac{3}{2}$
5. $\frac{5}{3}$
\qquad

To write a decimal as a fraction:
Step 1: Use place value to read the decimal. Say the number aloud.
Step 2: Write a fraction for the number you just said.
Step 3: Simplify if necessary.

Write 0.005 as a fraction.
Read 0.005 as "five thousandths."
Write $\frac{5}{1000}$ for five thousandths.
Simplify: $\frac{5 \div 5}{1,000 \div 5}=\frac{1}{200}$

Write 1.6 as a fraction.

Read 1.6 as "one and six tenths."
Write $1 \frac{6}{10}$ for one and six tenths.
Simplify: $1 \frac{6 \div 2}{10 \div 2}=1 \frac{3}{5}$

Write each decimal as a fraction or mixed number in simplest form.
6. 0.8 \qquad 7. 2.25 \qquad 8. -0.02 \qquad

Success for Every Learner

2-11 Equivalent Fractions and Decimals

Steps for Success

Step I Make sure that students understand the text in the lesson opener by using the following procedures.

- Ask for a couple of volunteers to explain batting averages to the class. Encourage the student(s) to give examples of professional baseball players, or their own batting average. Discuss the game of baseball and explain the meaning of batting average, at bat, and hit.
- Refer students to Problem 1 on the Student Worksheet. This is similiar to the lesson opener.
- Explain that the total number of times a player actually gets a base hit goes into the top of the fraction, the numerator, and the total number of times a player "attempts" to hit a ball goes into the bottom of the fraction, the denominator.
Step II Teach the lesson.
- Ask students to explain the word terminate. Relate their ideas to the concept of "terminating decimals".
- Ask students to explain the word repeat. Relate their ideas to the concept of "repeating decimals".
Step III Ask the students to complete the worksheet for this lesson.
- Point out that Problem 2 on the worksheet supports Example 3A in the student textbook.
- Think and Discuss supports the worksheet.

Making Connections

- Have students look up their favorite baseball player's batting average. Have them write out the meaning of the average in words. Then have students show the average as a fraction.
- Set up a small basketball hoop in your classroom. Pick four students and have them try $3,4,5$, and 6 times, respectively, to get the ball in the hoop from a specified distance away. Direct the rest of the students to keep track of how many times the ball goes in the hoop versus how many times the student attempted the toss. Have students create a list of "tossing averages" for each of the four players.
- Display a place value chart in the classroom so that students can refer to it when writing decimals as fractions.
\qquad Date \qquad Class \qquad

Lesson Student Worksheet

2-11 Equivalent Fractions and Decimals

His batting average is 0.625 .

Problem 2

Think and Discuss

1. Is the baseball average in Problem 1 a terminating or repeating decimal? Explain.
2. What is the place value of the 6 in 0.625 ? \qquad
3. Complete: $0.036=$ thirty-six- \qquad
4. Are these two decimals different? Explain.
0.3333333333333...
0.3

Answers

Lesson 2-1

Think and Discuss

1. 2
2. 2
3. Possible answer: 1 and -1

Lesson 2-2

Think and Discuss

1. different signs
2. add
3. add; -9

Lesson 2-3

Think and Discuss

1. When you find the difference between a positive number and a negative number, you add.
2. -9
3. You are not adding or subtracting -4 , you are subtracting 3 from -4 .
4. No, they are opposites.

Lesson 2-4

Think and Discuss

1. Because both numbers have the same sign. The quotient of two same signed numbers is positive.
2. Yes; The quotient is -2 in both cases.

Lesson 2-5

Think and Discuss

1. n
2. use subtraction
3. The equation is a true statement when $n=-13$.
4. when $n=-1$
5. when $n=1$
6. when $n=1$
7. when $n=-1$

Lesson 2-6

Think and Discuss

1. The variable is not alone on one side.
2. There are 12 months in the year.
3. The coefficient of m would need to be 365 .

Lesson 2-7

Think and Discuss

1. 4
2. It would be the same.

Lesson 2-8

Think and Discuss

1. 1, 2, 3, 4, 6, and 12
2. Because 6 is not the greatest factor that 24,36 , and 48 have in common.
3. In both methods you are finding common factors, and determining the greatest factor that the numbers have in common.

Lesson 2-9

Think and Discuss

1. It is the common multiple of both numbers with the least value.
2. Because 2 is a factor common to both numbers.

Lesson 2-10

Think and Discuss

1. Cher ate the same amount. $\frac{3}{4}$ is equivalent to $\frac{6}{8}$ and $\frac{9}{12}$.

Lesson 2-11

Think and Discuss

1. terminating decimal; the decimal comes to an end.
2. tenths
3. thousandths $=\frac{36}{1,000}$
4. Yes; $0.333 \ldots$ is a repeating decimal and 0.3 is a terminating decimal.

Assignment Guide

If you finished Example 1 assign:
Average 1-4, 14-21,56-64
Advanced 14-21, 54, 56-64
If you finished Example 2 assign:
Average 1-8, 14-25, 55-64
Advanced 14-25, 54, 55-64
If you finished Example 3 assign:
Average 1-12, 14-33,55-64
Advanced 14-33, 36-48, 54, 55-64
If you finished Example 4 assign:
Average 1-34, 35-49 odd, 55-64
Advanced 14-34, 36-48, 51-64

Homework Quick Check

Quickly check key concepts.
Exercises: 16, 20, 24, 26, 30, 34

O WORKED-OUT SOLUTIONS on p . WS4

Interactive Answers and Solutions

Math Background

Use these steps to find the fraction equivalent to a repeating decimal.

$$
x=3.5 \overline{721}
$$

Multiply each side by 10 .

$$
10 x=35 . \overline{721}
$$

Multiply each side by 1,000 .
$10,000 x=35,721 . \overline{721}$
Subtract the first equation from the second.

$$
9,990 x=35,686
$$

so $x=\frac{35,686}{9,990}$, or $\frac{17,843}{4,995}$.

Sunshine State	
Benchmark	Exercises
MA.7.A.5.1	$1-8,13-25$, $34-56$
MA.7.A.3.2	$57-60$
MA.7.A.3.3	$61-64$

GUIDED PRACTICE

See Example 1 Write each fraction as a decimal. Round to the nearest hundredth, if necessary.

1. $\frac{4}{7} 0.57$
2. $\frac{21}{8} 2.63$
3. $\frac{11}{6} 1.83$
4. $\frac{7}{9} \quad 0.78$

See Example 2 Write each fraction as a decimal.
5. $\frac{3}{25} 0.12$
6. $\frac{5}{18} \quad 0.2 \overline{7}$
7. $\frac{9}{11} \quad 0 . \overline{81}$
8. $\frac{3}{5} 0.6$

See Example 3 Write each decimal as a fraction in simplest form.
9. $0.008 \frac{1}{125}$
10. $0.6 \quad \frac{3}{5}$
11. $2.05 \frac{41}{20}$ or $2 \frac{1}{20}$
12. $3.75 \frac{15}{4}$ or $3 \frac{3}{4}$

See Example 4
13. Sports After sweeping the Baltimore Orioles at home in 2001, the Seattle Mariners had a record of 103 wins out of 143 games played. Find the Mariners' winning rate. Write your answer as a decimal rounded to the nearest thousandth. 0.720

INDEPENDENT PRACTICE

See Example 1 Write each fraction as a decimal. Round to the nearest hundredth, if necessary.
14. $\frac{9}{10} \quad 0.9$
15. $\frac{32}{5} 6.4$
16. $\frac{18}{25} 0.72$
17. $\frac{7}{8} \quad 0.88$
18. $\frac{16}{11}$
1.45
19. $\frac{500}{500} 1$
20. $\frac{17}{3} 5.67$
21. $\frac{23}{12} 1.92$

See Example 2 Write each fraction as a decimal.
22. $\frac{5}{4} \quad 1.25$
23. $\frac{7}{9} \quad 0 . \overline{7}$
24. $\frac{13}{3} 4 . \overline{3}$
25. $\frac{11}{20} 0.55$

See Example 3 Write each decimal as a fraction in simplest form.
26. $0.45 \frac{9}{20}$
27. $0.01 \frac{1}{100}$
28. $0.25 \quad \frac{1}{4}$
29. $0.08 \quad \frac{2}{25}$
30. $1.8 \frac{9}{5}$ or $1 \frac{4}{5}$
31. $15.25 \frac{61}{4}$ or $15 \frac{1}{4}$
32. $5.09 \frac{509}{100}$ or $5 \frac{9}{100} 3$
33. $8.375 \frac{67}{8}$ or $8 \frac{3}{8}$

See Example 4 34. School On a test, Caleb answered 73 out of 86 questions correctly. What portion of his answers was correct? Write your answer as a decimal rounded to the nearest thousandth. 0.849

PRACTICE AND PROBLEM SOLVING

Give two numbers equivalent to each fraction or decimal. Possible answers:
35. $8 \frac{3}{4} 8.75,8 \frac{6}{8}$
36. $0.66 \frac{66}{100}, \frac{33}{50}$
37. $5.055 \frac{1}{20}, 5 \frac{5}{100}$
38. $\frac{8}{25} \quad 0.32, \frac{16}{50}$
39. $15.3515 \frac{7}{20}, \frac{307}{20}$
40. $8 \frac{3}{8} \quad 8.375, \frac{67}{8}$
41. $4 \frac{3}{1,000}$
42. $3 \frac{1}{3} \frac{10}{3}, 3 . \overline{3}$
41. $4.003, \frac{4,003}{1,000}$

Determine whether the numbers in each pair are equivalent.
43. $\frac{3}{4}$ and 0.75 yes
44. $\frac{7}{20}$ and 0.45 no
(45.) $\frac{2}{3}$ and 0.67 no
46. 0.8 and $\frac{4}{5}$ yes
47. 0.275 and $\frac{11}{40}$ yes 48. $1 \frac{5}{6}$ and 1.83 no
49. 0.41 and $\frac{11}{27}$ no
50. 0.35 and $\frac{7}{20}$ yes

Economics

Use the table for Exercises 51 and 52.

XYZ Stock Values (October 2006)				
Date	Open	High	Low	Close
Oct 16	17.89	18.05	17.5	17.8
Oct 17	18.01	18.04	17.15	17.95
Oct 18	17.84	18.55	17.81	18.20

51. Write the highest value of stock $X Y Z$ for each day as a mixed number in simplest form.
52. On which date did the price of stock $X Y Z$ change by $\frac{9}{25}$ of a dollar between the open and close of the day? October 18
53. Write About It Until recently, prices of stocks were expressed as mixed numbers, such as $24 \frac{15}{32}$ dollars. The denominators of such fractions were multiples of 2 , such as $2,4,6,8$, and so forth. Today, the prices are expressed as decimals to the nearest hundredth, such as 32.35 dollars.
a. What are some advantages of using decimals instead of fractions?
b. The old ticker-tape machine punched stock prices onto a tape. Perhaps because fractions could not be shown using the machine, the prices were punched as decimals. Write some decimal equivalents of fractions that the machine might print.
54.

(4) Challenge Write $\frac{1}{9}$ and $\frac{2}{9}$ as decimals. Use the results to predict the decimal equivalent of $\frac{8}{9}$. $0 . \overline{1}, 0 . \overline{2}, 0 . \overline{8}$

Florida Spiral Review

MA.7.A.5.1, MA.7.A.3.3
55. Multiple Choice Which is equivalent to $\frac{5}{6}$?
A. 0.83
B. 0.833
(C. $0.8 \overline{3}$
D. $0 . \overline{83}$
56. Gridded Response What is $\frac{7}{16}$ written as a decimal? 0.4375

Find each quotient. (Lesson 2-4)
57. $51 \div(-3)-17$
58. $-121 \div 11-11$
59. $-91 \div(-7) 13$
60. $-57 \div 0$ undef.

Solve the equation. (Lesson 2-6)
61. $3 x-5=12$
62. $5 x+4=19$
63. $36+9 x=16214$ 64. $-9=-9 x-9$

CHALENCE 2-11			
${ }_{\text {Lessow }}^{\text {L211 }}$ Challenge			
Repeating decimals continue with out end with a repeating pattern. Some decimals continue without end, but do not have a repeatingpattern. These decimals are called nonrepeating, nonterminating decimals. Although they continue without end, these decimals may ave a pattern.			
Examples of nonrepeating, nonterminating decimals with patterns: 5.121121112... 0.881882883...			
Write r if the decimal is a repeating decimal and n if the decimal is a nonrepeating, nonterminating decimal.			
1. $4.562222 .$.	2. 6. 1323323332. n	3. $8.355355 \ldots$ r	4. 0.230230023... n
5. 10.7727227... n	6. 4.121314.... n	$\text { 7. } 0.428818181 \ldots$	8. 29.7053053 .. r
9. 1.221221222... n	$\begin{aligned} & 10.5 .67167672 \ldots \\ & \mathrm{n} \end{aligned}$	11. $75.320333 . .$.	$\underset{\mathrm{n}}{\text { 12. 4.121231234.... }}$
Identify the pattern in each nonrepeating, nonterminating decimal. Use the pattern to extend the decimal several places. 13. 0.010203			
0.01020304... \quad 8.63633633363333...15. $25.121231234 .$.			
18. Write an example of a nonrepeating, nonterminating decima with a pattern. Possible answer: 1.191991999...			

and INTERVENTION

Diagnose Before the Lesson
2-11 Warm Up, TE p. 106

Monitor During the Lesson
2-11 Learn It, Worktext pp. 83-85
2-11 Summarize It, Worktext p. 86

Assess After the Lesson
2-11 Lesson Quiz, TE p. 109

Interdisciplinary

Economics

Exercises 51-53 involve comparing stock prices. The information includes some history about the fractions used in stock values and their decimal equivalents on the ticker tape.

Answers

51. $18 \frac{1}{20}, 18 \frac{1}{25}, 18 \frac{11}{20}$
52. See p. A1.

Test Prep Doctor 4 must be careful to distinguish between the two different repeating decimals in choices C and D. You may suggest they write out the numbers $0.8 \overline{3}$ and $0 . \overline{83}$ as $0.8333 \ldots$ and $0.838383 \ldots$, respectively, to help them select the correct answer.

Journal

Ask students to write a paragraph comparing and contrasting terminating and repeating decimals. Have them include specific examples.

Power Presentations

 with PowerPoint ${ }^{\circledR}$
2-11

Lesson Quiz Write each fraction as a decimal.

1. $\frac{16}{5}$
3.2
2. $\frac{21}{8}$
2.625
3. $\frac{7}{10}$
0.7
4. $\frac{11}{20}$
0.55

Write each decimal as a fraction in simplest form.
5. 0.42
$\frac{21}{50}$
6. $8.625 \quad \frac{69}{8}$ or $8 \frac{5}{8}$
7. If your soccer team wins 21 out of 30 games, what is your team's winning rate? 0.70

Also available on transparency

